Identification of protein complexes by integrating multiple alignment of protein interaction networks

نویسندگان

  • Cheng-Yu Ma
  • Yi-Ping Phoebe Chen
  • Bonnie Berger
  • Chung-Shou Liao
چکیده

Motivation Protein complexes are one of the keys to studying the behavior of a cell system. Many biological functions are carried out by protein complexes. During the past decade, the main strategy used to identify protein complexes from high-throughput network data has been to extract near-cliques or highly dense subgraphs from a single protein-protein interaction (PPI) network. Although experimental PPI data have increased significantly over recent years, most PPI networks still have many false positive interactions and false negative edge loss due to the limitations of high-throughput experiments. In particular, the false negative errors restrict the search space of such conventional protein complex identification approaches. Thus, it has become one of the most challenging tasks in systems biology to automatically identify protein complexes. Results In this study, we propose a new algorithm, NEOComplex ( NE CC- and O rtholog-based Complex identification by multiple network alignment), which integrates functional orthology information that can be obtained from different types of multiple network alignment (MNA) approaches to expand the search space of protein complex detection. As part of our approach, we also define a new edge clustering coefficient (NECC) to assign weights to interaction edges in PPI networks so that protein complexes can be identified more accurately. The NECC is based on the intuition that there is functional information captured in the common neighbors of the common neighbors as well. Our results show that our algorithm outperforms well-known protein complex identification tools in a balance between precision and recall on three eukaryotic species: human, yeast, and fly. As a result of MNAs of the species, the proposed approach can tolerate edge loss in PPI networks and even discover sparse protein complexes which have traditionally been a challenge to predict. Availability and Implementation http://acolab.ie.nthu.edu.tw/bionetwork/NEOComplex. Contact [email protected] or [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks

Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...

متن کامل

A Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks

Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Identification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks

Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...

متن کامل

Comparison of Hubs in Effective Normal and Tumor Protein Interaction Networks

ABSTRACTIntroduction: Cancer is caused by genetic abnormalities, such as mutation of ontogenesis or tumor suppressor genes which alter downstream signaling pathways and protein-protein interactions. Comparison of protein interactions in cancerous and normal cells can be of help in mechanisms of disease diagnoses and treatments. Methods: We constructed protein interaction networks of cancerous a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 33 11  شماره 

صفحات  -

تاریخ انتشار 2017